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ABSTRACT

FOUNDATIONS AND CONCEPTS OF SOFTWARE PHYSICS

R. P. Kovach and K. W. Kolence

Kolence's theory of the performance of computing systems is restated.

In this development, the basic subsystems are reduced to two: logical

subconfigurations and software units. These and the three fundamental

variables, work, time and storage occupancy are all defined using as a

basis a single logical construct, the set of instantaneous descriptions

of instruction executions. Basic results are given for time relationships

(utilizations and concurrency levels), work relationships (distribution

numbers), and work and time relationships (absolute power and relative

power) are derived. Interpretation of variables used in other approaches

in software physics terms are indicated.
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INTRODUCTION

Software physics is a theory for characterizing the behavior of

executing computing systems named and proponed chiefly by

K. W. Kolence. Its fundamental concepts, basic results and a variety

of applications have been given in a number of publications by him,

(KOLE70, KOLE72, KOLE73, KOLE75a, KOLE75b, KOLE76). The fullest and

most recent treatment of the theory and some of its applications is

given in KOLE76. The main motivation of the book, and the theory

itself, arises from the many problems inherent in capacity management

functions in data processing organizations. At this time a consider-

able body of work exists, based on software physics, in such areas as

workload forecasting and capacity planning, equipment and configura-

tion planning, performance management, cost accounting and charging

policy and budgeting. So far this work has withstood well the many

tests provided by the rough and tumble world of present day computer

installations.

The present paper is nothing more than a restatement of the

nuclear theory as presented by Kolence. It is done in order to better

meet the accepted requirements of theory construction: economy of

assumptions and basic (undefined) terms, more compact and rigorous

derivation of results and more logical and orderly development based

on established principles and methods.

In the present development only one (assumed) logical construct is

required, namely, a complete set of complete instantaneous descrip-

tions of instruction executions. From this, using set theoretic

(including graph theoretic) methods, the two basic subsystems, logical

subconfigurations and software units, are defined. Then the three

fundamental variables, work, time and storage occupancy are defined.

Relationships among these are determined by the structural properties

of software unit/logical subconfiguration pairs. Kolence's notation

has been modified slightly and extended. A few results, not pre-

viously educed, are given.
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The only other attempts at a coherent approach to this subject are

queueing theory and what's now known as the operational analysis of

queueing networks. In this paper there are a few anticipatory hints

on interpretations of software physics variables and relationships

leading to queueing theoretic results. This whole area is fully

explored and developed by Traister (TRAI79). From the point of view

of the queueing analyst the basic theory of software physics analyzes

service times into their constraints. In a practical setting this is

important, revealing what variables may be changed and what the con-

sequences are for service times. The use of software work in place of

service requests introduces a weighting factor to requests more

accurately reflecting the demand placed on the system by requests.

The introduction of system related clocks and the relationships among

their timings adds a new dimension to the characterization of utiliza-

tions, service times and response times. The indications at this time

are that not only can software physics subsume queueing network

analysis as applied to computer systems but that a whole new set of

results will emerge from the combined approach.
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THE LOGICAL STRUCTURE OF COMPUTING SYSTEMS

Figure 1 shows a conventional representation of a computer system

configuration. There is a wide variety of charting conventions

employed in drawing diagrams such as this but they all have the same

essential properties, the differences arising from considerations of

ease of maintenance of the drawing, symbol conventions, local tradi-

tions and so forth. Such graphs are very useful for showing all the

devices in an installation, the cabling, logical and physical

addresses and similar hardware related data.

When analyzing the dynamic behavior of computing systems, however,

these diagrams may be deceptive because they ignore the influence of

time and time sequence on the topology of the system. False assump-

tions may be made unconsciously, leading to erroneous conclusions

about the relationship between configuration and performance charac-

teristics. In the example at hand, for instance, it appears that

there are two paths between main storage and the disk drives in the

second string, one via channel 1 and one via channel 2. At the time

of any given execution, however, a drive may be connected to main

storage by only one channel. either channel 1 or channel 2. With time

taken into consideration, all such apparent alternate paths are

mutually exclusive.

It is convenient to think of the usual configuration diagram as

the graph union of all possible paths that may occur in the course of

some execution. With that in mind then, appearances notwithstanding,

these configuration graphs are rooted trees. There is one path

between any higher node and any lower one and there are relative roots

at every level. Most important for present consideration is that they

exhibit the upper lattice property, that is, every node contains or

covers the properties of each node dependent from it. So, for

instance, we say that channel 1 is a disk channel because it contains

control units which contain disk drives. For the same reason, channel

2 is a disk channel. Channel 3 is a tape channel because it contains
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control units which contain tape drives. Channel 2 is a tape channel

for the same reason.

At this point we require a definition for a logical subconfigura-

tion. This in turn requires a definition of a composition operation

on graphs which we call a graft. To form a graft of several trees,

take their graph union. If the resultant graph has a root then the

graph is complete. For example, the union of:

A b and B

is A U B=

which is a graft. If the resultant graph does not have a unique root,

then one is created and all the relative roots of the union are made

immediate descendents of it. For example, if the union of:

A b andC=

a h

is AU C -

which produces the graft:

AA C a

b
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A logical subconfiguration is a graft of configuration subtrees

selected by either some set of properties that they contain or by the

root nodes or, occasionally, by a combination of both. The most

commonly used logical subconfigurations of the first kind are called

equipment class subconfigurations. Some of them are illustrated in

figures 2 and 3 based on the configuration of figure 1. Some examples

of the second kind of logical subconfiguration, based on configura-

tional characteristics are shown in figure 4. Note also that the

logical subconfiguration made up of all channel subconfigurations

would produce 0, the Input/Output subconfiguration. Figure 5 shows a

combined case where the root nodes are specified (control unit) and

the equipment class selector (disk) as well.

Typically, the only subconfigurations with more than one level are

the various I/O subconfigurations. These multiple levelled structures

are supplied numerical identifiers, in the form of subscripts, by the

conventional method used for numbering nodes of trees, one number for

the first level, two numbers for the second level and so on. Thus

drive number 4 on control unit number 2 on channel number 3 is

324. The control unit subconfiguration is designated 332 and the

channel subconfiguration, 03 . This is, of course, the exact analog

of the physical and logical addressing scheme used both in hardware

the software systems. Note also that in the conventional configura-

tion diagram certain devices (drives especially) may have more than

one designation. This causes no inconsistency whatever because at any

given time an action occurs on a device under only one designation.

In other words, the actions going on under the several designations

for the device are mutually exclusive with respect to time. Further-

more, all of our instrumentation will so report it. The fact that a

single hardware device has several logical designations has no effect

on the logical structure, it only places a constraint on the domain of

possible simultaneous events.

The previous discussion and the figures mentioned there require an

explanation of the Greek letters. Certain logical subconfigurations

are so frequently used that it is convenient to have a compact nota-

tion to refer to them. The equipment classes are indicated with a

brief word or abbreviation which is self-explanatory, e.g., disk,

-11-
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tape, ptr, card, etc. Configurational logical subconfigurations are

written as a single Greek letter, e.g., i is the whole configuration,

0 is the I/O subconfiguration and y is the CPU subconfiguration. For

those subconfigurations where thl- root is actually a device, a Greek

letter designates the subconfiguiation and the corresponding Latin

letter the device which is the root node. E.g., a2 is the channel 2

subconfiguration and a2 is the channel device which is channel 2,

S21' is the first control unit subconfiguration in the (2 subcon-

figuration and b21, is the control unit device which is its root

node.

1
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PROCESSORS AND STORAGES

In the conventional configuration diagram of figure 1, with the

exception of the main storage, all of the devices depicted are proces-

sors. In general, all devices are either processors or storage. They

are distinguished by their operational relationship in an execution:

processors change the contents of storage. A rough rule for distin-

guishing the two is if the device may be programmed (microprogrammed)

then it is a processor, if its contents are changed by a processor, it

is a storage.

Clearly, processors contain storages and storages have built-in

processors to control them. For instance, a channel may contain

memories (registers) for such things as commands, addresses, error

detection codes, status codes, etc. those memories may be manipulated

by a microprocessor which itself contains scratch-pad memories and

internal registers. This bifurcation can be recursively applied right

down to the movement of electrons across molecular boundaries, if

there is reason to do so. When we are examining activity at one level

of processors and storages, the activity on storages by processors

within them are considered internal, not part of the activity we are

studying. Typically, internal activity is treated as a loss or

degradation factor much like friction in mechanics. For example, if

we are interested in a channel's activity in handling data transfers

for a computation in the CPU, then the channel work involved in

channel command processing, status checking and so on is considered

internal work. If, on the other hand, we are interested in the

activity on the status registers, address registers, etc. of the

channel, then the activity of the microprocessor manipulating those

registers is the external work and the activity within the micro-

processor on its scratch pads and registers is internal work. These

distinctions make the problem manageable, allowing us to isolate

important variables at one level (ignoring the lower levels) and then

reapply those concepts at lower levels much like the laws of mechanics

discovered at the macroscopic level (ignoring friction) were applied

to the molecular level to account for friction.

-13-
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It is not necessary for a processor to be a physically

distinguishable device, some free-standing box sitting out on the

computer room floor. As long as a set of processor functions, exclu-

sive of other processor functions can be distinguished, as long as a

mental boundary can be put around a processor subsystem, then it may

be considered a processor. So, for instance, a built-in channel, even

when it shares circuitry with the CPU so that some of their execution

times are mutually exclusive, is still a distinguishable processor.

Furthermore, as we shall see, all of the relationships of fundamental

variables that apply to processors individually also apply, with

appropriate accommodation, to logical subconfigurations of processors,

making them in effect logical processors.

All of the common equipment classes may be classified readily into

processors or storage. A partial list is given below for reference

and classification.

Processors: Storages:

CPU Main Storage (e.g., core, diode)

Disk Drives Registers (everywhere)

Tape Drives Disk (platters)

Drum Drives Tape (reels)

Printers Drum

Card Readers Paper

Card Punches Cards

Paper Tape Reader Paper Tape

Paper Tape Punches Cartridges (mass store)

Terminals Etc.

Mass Storage Drives

MICR Readers

A/D and D/A Converters

Low Speed Channels

(e.g., byte MPX)

High Speed Channels

(e.g., selector, Blk MPX)

Disk Control Units

Tape Control Units

Drum Control Units

5-14-
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Printer Control Units

Card Control Units

Paper Tape Control Units

MICR Control Units

Transmission Control Units

Terminal Control Units

Mass Storage Control Units

Etc.

The reader may have noticed that one whole category of device has

not been mentioned so far, namely cables, transmission lines, busses

and the like. From the point of view of configurations they are

treated only as connectors, arcs between nodes. They only enter into

consideration when their capacity has some limiting effect on the

performance characteristics of processors. Analysis of their capacity

is most appropriately handled by considering them as channels in the

information theoretic sense.

15

-15-j



SOFTWARE UNITS

In describing the properties of an executing computing system or

any of its subsystems it is necessary to specify not only the hardware

constituent (device or subconfiguration) but also a "software" con-

stituent. Clearly, this is so because a processor event consists of

the execution of an instruction by a processor and the kind of proper-

ties we are interested in may be conditioned by the instruction and

therefore, sets of events by sets of instructions.

The usual methods of designating or categorizing software are not

adequate for our purposes. Most of them imply identities or equiva-

lencies which simply will not hold in the situations we are

describing. For instance, if the software constituent were defined to

be a program in its source language state then a program compiled and

executed on two different computers would be considered the same, in

some regards at least. Similarly, a program run through two different

compilers and executed on one machine or two different executions of

the object code on one machine would be considered identical when, in

fact, they might (rather, probably would) produce different series of

processor events. Furthermore, such approaches limit scope, prevent-

ing us from talking about execution characteristics of sets of

instructions across program boundaries.

To arrive at a more satisfactory definition we resort to the

following heuristic device. Assume the existence (or the possibility

of existence) of a complete collection of instantaneous descriptions

of all instruction executions over some time interval, in the manner

of an instruction execution trace. Each description contains a

variety of information such as all relevant addresses of the instruc-

tion (absolute memory address, offsets from base registers, from page

start, page number, etc.), the instruction itself, all operand

addresses, the operands themselves (data), the time at the start and

end of the execution and whatever else is required. More precisely,

we should say assume that the information provided by such a trace is

known. Now we are in a position to define a software unit.

-16-



A software unit is any subset taken from the complete collection

of instruction-operand executions over some time interval.

Note that this means the processor events, the execution of

instructions operating on operands and those operands, not some

selected lines from a print-out.

The software unit (subset) consisting of the full set for some

time interval is called the full workload for that interval and is

denoted by L. If the time interval is partitioned into several

intervals, then full workload for each subinterval is called a sub-

workload, designated as L. and L = U L..1

Obviously, any software unit may be decomposed into other software

units and the union or intersection of any two software units is also

a software unit. Some decompositions or compositions are more usually

employed than others. Most often software units are partitioned:

S = U S.i where Si n Sj = 0 for i # j.

Some common partitionings are into software units where each unit

is all the executions of a given instruction or class of instructions,

into applications, jobs, and program runs (discussed below), into

subworkloads as described above or into other partitions within sub-

workloads and so on. Situations arise, especially in measurement

experiments and in accounting procedures, where a decomposition is not

known with certainty to be a partition. It is necessary to be aware

of this fact so that false conclusions about properties of the aggre-

gation may be avoided.

In a deterministic machine a software unit is completely

determined by a set of instructions (program) and the full set of

initial operand values (inputs) to them. Therefore, it is possible to

treat the pair instruction-set/inputs as equivalent to a software

unit. In practice, the only situations where both may be precisely

specified is for applications, jobs, steps, program runs and the

like. On occasion, following common parlance, expressions such as

"sort work" and "work of the operating system" are used. The first of

these means the work of the software unit made up of executions of the

-17-



sort program against some known set of inputs (last month's invoices,

etc.) and similarly for the second. What is not meant, most

emphatically, is that the sort program or the operating system program

is a software unit.
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NOTATION

In analyzing the behavior of executing computing systems we need

to characterize sets of processor events and their consequences. A

processor event always requires a "linked pair , an element of a

software unit (executed instruction and operands) and a processor,

including subconfigurations. To specify sets of events we must

specify software units on sets of processors. Notationally, this is

handled by using functional notation as it is commonly used in proba-

bility theory and combinatorial analysis. Software physics variables

will generally be of the form:

F(software unit list; processor list)

where F is the functor, the two lists are separated by a semicolon and

the elements of each list are separated by commas. Note that F is not

a function of the software unit and subconfiguration. It is a vari-

able or a value over the range specified in the two lists. The lists

specify to what the variable or value pertains.

Certain classes of software units and certain logical

subconfigurations are so frequently used that a standard set of

symbols for them has been established for the sake of brevity and

convenience. As described before, L is the software unit (subset)

made up of all the instruction-operand executions for some period of

observation. If L is partitioned by time, then the subworkloads are

designated by L i, i = 1, 2, 3 . . .. S is the symbol for any soft-

ware unit whatsoever (including L) and S., i = 1, 2, 3 . . . is any

subset of S.

Usually we will be interested in partitions of S, that is, where

Si n Sj M 0 for i # j. If we need to distinguish hierarchies of

subsets (partitions), the subscripting will be handled as it is for

subconfigurations, described below.

The most common subconfigurations referred to are the whole con-

figuration, I, the I/O subconfiguration, 0, the CPU subconfiguration,

Y, channel subconfigurations, 1,1 control unit subconfigurations,

aii and drives 6 ijk For those subconfigurations which are

hardware subconfigurations, that is, where the root node is an actual

-19-



device, it is desirable to have a distinct, but related, symbol for

the device. The most usual are a. for channels and b.. for con-

trol units. The drives, being leaves of the tree, are degenerate

cases of subconfigurations where the drives and the subconfigurations

are one and the same thing, so no distinct symbol is required for the

device.

In many cases it is necessary to indicate several software units

or several subconfigurations (or both). Furthermore, it is always the

case that an item in the list is contained by another item in the list

(except the last, of course). Our convention will be to write the

lower level or smaller item to the left. So now the format of a

typical variable is:

F(software unit, containing S.U., . . .; subconfiguration,

containing subconfiguration, . .

For example, we may be interested in the following utilization:

U(SI,S;y,'). This means the ratio of the time that software unit

S1 is executing on the CPU with respect to the time the containing

software unit S is executing on the full configuration.

The symbol for any subconfiguration whatsoever is X (chi). In

writing many expressions it is necessary to not only indicate that one

subconfiguration contains another but also how many levels away the

other is. This is handled by the device of using an * in the sub-

scripts. An asterisk means a string of one or more subscript values.

The usual rules for substitution apply. Once a string of subscripts

has been assigned to * then it must be substituted uniformly

throughout the expression. Thus, if we write an expression about X

and X, then we are talking about any subconfiguration and any

subconfiguration contained in it. If we write about X and X* then

we are talking about any subconfiguration at least two levels below

X. If we write IF(S;x*j,X) then we are talking about the sum

of the F's for all subconfigurations at some level which is at least

two below X, and so on. If it is required to deal with hierarchies of

software units (especially partitions) then the same mechanism may be

employed.
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FUNDAMENTAL VARIABLES: TIME

Extent in time is the most generally perceived property of

processor events. So much so, in fact, that it is commonly and

erroneously used as a measure of the amount of activity of computing

systems. On top of this there is considerable confusion over appro-

priate measures of time, especially for subconfigurations, and the

relationship between device times and subconfiguration times. Clarity

and precision in concept and definition of time is absolutely

essential if the theory is to be fruitful and not break down at some

later point in the deduction process.

The most basic measure of time is that of the time it takes a

device to execute an instruction. This includes all of the time

required by that device alone to perform the instruction, i.e., it is

not just transfer time. It does not include preparation time,

hold-off time or blocking time due to some other (perhaps internal)

device even though the subject device is "connected" or signalling

"busy." To illustrate, the execution time for a disk instruction

includes the seek time, search time (rotational delay, latency) and

the transfer time. It does not include the time after the seek is

completed during which the search cannot start (if any), commonly

called seek-delay, or the time consequent on RPS "misses" despite the

fact the the drive is "busy" throughout all those times. Seek delay

and RPS miss time are called delay times because they are due to some

other drive blocking at the control unit or channel level. They are

not due to the execution of the observed drive.

The execution time of device Y for software unit S is the total of

the instruction execution times on Y of the instructions of S for Y.

The functor for execution time is the symbol Tx and the above state-

ment is written Tx(S;Y). On occasion, we shall need to discuss delay

times and busy times. These are symbolized as Td and Tb respectively

and the three are related by

Tb(S;Y) = Tx(S;Y) + Td(S;Y).

-21-
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We extend the definition of execution time to subconfigurations by

appealing to a concept common in modern physics: time changes in a

system only when an event occurs in that system. Translated into

software physics terms the definition states that execution time for a

subconfiguration increases when any constituent of the subconfigura-

tion is in execution. An equivalent, and perhaps more intuitively

appealing definition may be made by using the notion of associated

clocks. Each device has a clock and that clock runs whenever that

device is executing. Associated with each node of every logical

subconfiguration is a clock that runs when the clock of the device at

that node (if there is one) is running or when the clock of any

contained node is running. This approach has the same recursive

character as the first one.

Because of the possibility of simultaneous activity at lower

levels it is evident that the execution time of a subconfiguration is

not, in general, the simple sum of the execution times of lower level

subconfigurations. In fact,

Tx (S;×X) TxC(S;~

which also may be applied recursively. Likewise, dually,

Tx (S; X) Tx (Si; X,
1

even when the S. constitute a partition. To find a rule of compo-1

sition for execution times, we must go back to the basics. Indicate a

point in time when is executing by tx(S;X). An instruction

execution, somewhere in X3, generates a continuous point set, map-

pable to the real line, over some interval I. Indicate that point set

by

{tx (S; Yj I

The amount of time to perform the instruction is a measure function on

that point set (e.g., upper bound minus lower bound) indicated by

[Qtx(S;xj)}i-

-22-



This in turn leads to

Tx(S;xj) = [ {tx(S;xj)}I],
I

which is to say that the execution of X. for S is the sum of the

time interval lengths for the execution of instructions from S for

Xj, as we said above.

Now, if we have several subconfigurations, X. (for various j),

then the union of their point sets will create a new set of intervals,

K, and we have

Tx(S;X) = {{U{tx(S;j K I .

K

This is the rule of composition we were seeking.

That forbidding looking nest of brackets is really asserting

something that is in the realm of common sense. Some examples from

figure 6 will make the point clear. Figure 6 illustrates an execution

time pattern for three mutually exclusive software units, called SI ,

S2 and S3 , on a configuration consisting of one CPU, one channel

with two control units, each with three disk drives. The whole time

span has been divided into 100 units to permit times to be equated to

ratios (percents) readily. The first band of three lines shows the

execution time pattern of the three software units on the CPU. The

next band of three lines shows the execution times of the channel and

control unit devices. The next six lines show the time patterns for

the drives, the labels above each segment showing the software unit

associated with that execution. Several bands further down are the

A execution patterns for the two control unit subconfigurations and the

channel subconfiguration, Tx(L;a 11 ), Tx(L;a 1 2) and Tx(L;ci).

The execution pattern for 6110 is a broken set of intervals

whose lengths total 55 units. Likewise, the sums of the interval

lengths for 611l and 6112 are 30 and 32.5 respectively. Now, form

the "union" of those execution patterns (imagine the "ceiling" is
lighted and look for the shadows on the "floor") and we get the

execution pattern of 811, which is just three execution intervals,

-23-
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totalling 85 units. Do the same for the other three drives and a12'

producing one long execution interval of 80 units. Do the same with

either all 6 drives or the two $ execution patterns and produce the

pattern for ci" This, in A nutshell, was what the previous discus-

sion was describing.

-
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One other observation should be made at this point. If the times

shown for the drives were busy times rather than execution times, that

is, included seek delay and RPS miss time as well as execution time,

it would have no effect on the time pattern for the 6 or X configura-

tions. In other words,

Tb(L;$1I) Tx(L;aII) and Tb(L;a I) Tx(L;QI).

This is so because the delays experienced by one drive are due to the

execution of some other drive. There is another class of time measure

commonly encountered which should be accounted for in our system,

elapsed time and the closely related idle time. It is clear from the

definitions that idle time for a subconfiguration will not be

registered on its own clock since that clock is only running when the

subconfiguration is executing, i.e., not idle. Since elapsed time

would be identical to execution time unless provision were made for

intervening intervals of idle time, the same argument holds for

elapsed time as well. Therefore, both must be measured with respect

to some higher clock. Elapsed time for a subconfiguration X, is the

difference, on the clock of X, between the beginning of the earliest

execution (least lower bound) and the end of the latest execution

(greatest upper bound) of X,. Elapsed time for subconfigurations is

written Te(S;X,,X). There is an analogous definition for the soft-

ware unit dual, written Te(Si,S;X) and the composite case is

Te(SiS;XX).

One last definition, to specify the upper bound to the process:

Te(L; , ) = Tx(L; P).

This assertion not only provides closure but it also states that there

is no higher clock than that of (L;f). In other words, idle times for

the entire system are excluded from consideration. Periods when the

whole system is idle because of lack of jobs, schedule problems, power

outages, machine or software breakdowns or because the installation is

closed for week-ends and holidays may be of interest or concern to

management but they have nothing to do with a theory of executing

computing systems.

The illustration of figure 6 should clarify some of the

relationships discribed above. For example, Te(L;6ll, II 65

because the beginning is at 30 and end at 100 but there are five units

-26-
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wherein the clock of 1 is not running (ending at 70 and 80).

However, Te(L; 1  70. Also, Te(SI,L;6 = 65 but

Te(SIL;1) 72.5.

It is the usual, if not universal, practice to only use the

highest clock, that of (L;) and to talk of elapsed time only with

respect to software units. Why this should be, other than the force

of habitual thinking, is not clear.
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LOGICAL SUBCONFIGURATIONS AND SOFTWARE UNITS: DUALITY

In the previous discussion of logical subconfigurations no mention

was made of the effects of software unit specifications on them, that

subject not yet having been introduced. Since no software units were

specified and the processor subconfiguration was considered to the

union of all possible path graphs, in effect, we were assuming that

the software unit was some full workload, L. The instantaneous path

descriptions may be considered part of the information provided by the

assumed trace. If we select some software unit, a subset of the

executed instruction/operand pairs, then we are selecting a subset of

the path descriptions as well.

The conventional configuration underlying the time relationships

illustrated in figure 6 is:

IMAIN STORAGE

C.U 12

The logical subconfiguration 0 for software unit S1 is:

0/S1

( 1  a1

11 11 12 12

1 121

-28-
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while 0 for S2 is:

110 122 81

and so on.

If S contains S. then a subconfiguration VS contains X/S.
just as subconfigurations based on devices do, e.g., if X contains

X, then XIS contains X,/S. Therefore, any theorems about proper-

ties of executing systems arising from containment of device based

subconfigurations will be true, suitably rewritten, for subconfigura-

tions based on software units and subunits. This will be, in fact,

most theorems.

It may have been noticed that subconfigurations based on software

subunits have the same height as the containing subconfiguration.

This will always be the case. Subconfigurations contained in device

subconfigurations have a lower height. The first variety are formed

by pruning leaves and branches, the second by removing roots. If

these actions are considered as operations, then we can talk of the

composition of the operations. Clearly, the order of performing the

operations is immaterial, yielding the same resultant subconfiguration.

-29-
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TIME RELATIONS: UTILIZATIONS AND CONCURRENCIES

Given that we have clocks at every node of every logical

subconfiguration, it is natural to relate the readings of one clock to

another. Two of the most common classes of relationship are the time

on a clock with respect to that of a containing node and time on a

clock with respect to that of a similar node in another subconfigura-

tion. The first relationship yields utilization numbers and the

second time-balance ratios, which can be derived from utilizations.

The definition of utilization for subconfigurations is:

Tx(S;X.)
U(S ;X., X) = Tx(S;x ) •

This is the utilization of X, with respect to X, the portion of the

time that X is executing when x.( is also executing. On those

occasions where we need to talk about utilizations based on busy time,

Tb, or delay time, Td, then we will write Ub and Ud respectively. U

is understood to mean Ux. Some examples from figure 6:

55
U(L;S1 1= 8= .65

32.5
U($2 ;612'll) =- = .93

U(L; 1 -- 9-- = .81 and so on.121,C'l) 90

The dual for software units is:
Tx(Si ;X)

U(SiS;X) TS=TX (S, X)

this measure is commonplace in practice where X is the CPU and S the

full workload, i.e.,

U(SiL;y) - Tx(iY)
Tx(L;y)
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Examples from figure 6:

30
U(S3 'L;O1 I) = 8"- .35

100UJ(S11'LI) -- = 1.00, etc.

The utilization resulting from the composition of operations is:

Tx(Si;x*)
U(SiS;X.,X) - 1

Tx(S;x)

that portion of time when S is executing on X that Si is executing

on X.. Now, if we multiply the right side by:

Tx(S i ;X)

Tx(S i ;X)

and rearrange factors, we have:
Tx(S i;X. )  Tx(S i X)

U(SiS;X.,X) = Tx(Sx) * Tx(Sx)

= U(si;X.,X) * U(SiS;x)

Or, we can multiply by Tx(S;X.) and have:
Tx(S;X.)

U(SiS;X,X) = Tx(Si;X) Tx(S;X)

Tx(S;X) Tx(S;X)

= U(SiS;X . ) 'U (S ;X . ,X )

Rearranging the factors in one of these and comparing the two

emphasizes the dual symmetry. Again, examples from figures 6:

r~t~y.O37.5
U(S3'L;2 X 3-- = .42

S375 .94
U($3 12F 1  40

40U(S 3FL;I a 9-- 0 .44

and .42 = .94 x .44, etc.

Because of the ratio definition there is an evident "chain rule":

U(S;x**, X) - U(S;x**,X.).U(S~x.,x)

And dually for software units. The reader can find examples in the

illustration. These obvious identities have considerable practical

value, permitting us to measure some of the values and derive the

others. Usually, certain measures are more difficult to obtain than
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II
others so that with these identities we may avoid the need for taking

the more difficult measurements.

Numbers of considerable interest arise when we take sums of

utilizations such as:

U(S;X.,X) where the

means the sum over the range of the rightmost subscript in .. This

is the average number of X.'s executing over the execution time of X

or, in short, an average concurrence. This becomes apparent by simply

expanding the definition:

Tx(S;X.)
M(S;x.,x) - IU(S;X.,X) X(S;X*) = *

* . Tx(S;x) Tx(S; X)

i.e., the product of M(S;X.,X) and Tx(S;X) yields the sum of the
execution times of the X.'s so that M is the average multiplicity of

X. executions over the time Tx(S;X).

M(S;X.,() is a measure of concurrency of execution of processor

subconfigurations which is commonly called the level or degree of

multiprocessing. The software dual, M(SiS;X) is the level of

multiprogramming. Consequently, Kolence (KOLE76) refers to them

collectively as MP levels. The composite case is the combined

multiprogramming-multiprocessing level:

M(Si. S; x* 'X) ______,* __

Tx (S; X)

where, of course, the S. are mutually exclusive, as they are for the1
simple multiprogramming case.

Often, and often inadvertently or unwittingly, utilizations and MP

levels are taken with respect to busy times:

Tb (S;X.)
Ub(S;X,,X) T

Tx(S;X)
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Since Tb(S:X*) - Tx(SX.) + Td(S;X*),

STx(S;X.) Td(S;X,)

Mb(S;X,,X) a * + * M(S;x,, X ) + Md(S;X,,X)
Tx(S; X) Tx(S;x)

which is hardly surprising (the average of sums is the sum of

averages). However, under interpretation, this does provide an

interesting "cross-over" to results in the operational analysis of

queueing networks.

M(S-,X,X) is the average number of requests being simultaneously

serviced within X (by the X.'S) and Md(S;X.,X) the average number

of requests waiting for service within X (e.g., in RPS or seek-delay

states). Note that this does not include those requests enqueued

before X. Therefore, Mb(S;X*,X), consistently interpreted, is n,

the number of requests in queue, within X. (Here, and below, we use

the notation of Buzen and Denning for variables from the operational

analysis of queueing networks:

n is the number of requests enqued on andx
being serviced by X.

X is the throughput rate of X.
x
S is the average service time of X.

x

In the present context the use of the two notations is unfortunately

confusing. Nonetheless, it seems to be the best way to bring out the

comparability of the two approaches. If now we introduce C, the

number of completions in time Tx(S;X) then the average busy time for

the X*'s is:

ITb(S;X.)

Tb(S;X.) a *
C

Now, since:

; Tb(StX.)
Mb(S;X.,X) - *

Tx(S;X)
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it follows that:

Tb(S;X.).C - Mb(S;X.,X).Tx(S;X) or,

Tb(S;X) _ Mb(S;X.,X) " Tx(S X)

C "

The last factor is average service time Sx . This implies that

Tb(S;X) is the internal response time (not counting queue-time before X)

Rx , because if Rx - nx.Sx, as the above implies, and if Little's

Law, nx = R X x , where Xx is the throughput rate of X, then

1
R R-XX.S or X S I

x

a fundamental result (or definition) of queueing network analysis.

The discussion and demonstration given above has significance not

just because it shows the isomorphism of the two approaches, under

proper interpretation, but because it suggests extensions in the

results of queueing network analysis by virtue of the software unit

dualities that arise from the software physics approach. This whole

matter, the subsuming of queueing network analysis by the methods of

software physics, is analyzed and developed by Traister(TRAI79).

MP levels based on execution time, which are a consequence of

opportunities for parallelism inherent in the configuration and the

patterns of request arrivals, are a measure of how well the software

units exploit the configuration or, conversely, how well the configur-

ation meets the requirements of the software units. MP levels based

on busy time show the concurrency of waiting as well as executing. In

fact, beyond a certain point, as Mb increases, Md increases more

rapidly than M, that is, there is more "improvement" in the overlap of

waiting than there is in processing. To measure only Mb without

obtaining either Md or M is to know only a part of the performance

characteristics.

Another set of useful identities arise when we apply the chain

rule for utilizations to MP levels:
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M(S;X**,X) = U(S;X.,X)*M(S;X**,X.)

and so on.

Ratios of device times to subconfiguration times arise in the

analysis of delays due to blocking, especially at control units and

channels where connect time is less than drive execution time, as is

the case with disk drives. For example, since U(L;b,a) is the proba-

bility that there is a path block at the control unit when some drive

is executing it figures directly in the creation of seek delays and

RPS misses.

Ratios of utilizations, such as:

U(St,-*,X) = Tx(S;X.)
~Tx(S;X )

U(S;X4*,X) Tx(S;X*I)

are time balance numbers. They are frequently of interest to config-

uration designers and system tuners. They are not the only variety of

balance indicators, however.

-35I
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FUNDAMENTAL VARIABLES: WORK

A second fundamental variable is required for the theory to

quantify the activity of software units and processors, a measure of

how much was effected by them. Within appropriate constraints, this

measure must be invariant with respect to time. For instance, if we

executed a program against a set of inputs (which determines a soft-

ware unit) on some configuration and then made a modification which

doubled the basic cycle rate of some of the processors and then

executed the same program against the same inputs again, the measures

of activity must be equal. Similarly, if we execute the same

program-input pair on two machines from the same "family", having

identical instruction sets, then the measures must be equal even

through there may be considerable difference in the internal opera-

tions of the two.

This measure is software work. It has the same basis as work in

any branch of physics. Work is associated with changes in state.

Work is performed whenever there is a change of state: the greater

the state change the greater the amount of work and, in discrete state

spaces, the minimum amount of work is associated with a minimum state

change.

Kolence (KOLE76) develops the definition in the following way.

Storages are made up of sets of n-bit containers. The n-bit string in

a container at any instant in time is a symbol from an alphabet of
2n symbols. At every instant in time every container is in a symbol

state. A unit of work is performed when the symbol state of one

container is changed. A "standard" container size of 8 bits is arbi-

trarily chosen and, following common usage, both the container and its

symbol are called a byte. The working definition then becomes: A

unit of work is performed when a processor changes one byte of

storage. Since, in practice, our instrumentation will not permit us

to see the "before" and "after" values of every processor action on

every byte of storage, the "laboratory" definition becomes: One unit

of work is performed when a processor transfers one byte to a stor-

age. Clearly, on average, this unit is less than one of the units

-36-



in the basic definition because sometimes the byte transferred will be

the same as the byte that was in the storage.

We have now defined work and a measure for work by processors. It

remains to define them for software units and logical subconfigura-

tions. The work done by an instruction-operand pair is the work done

by the processor in executing the instruction on the operands. The

amount of work done by a software unit is the sum of the amounts of

work done by the instruction-operands that make up the software unit.

Work is done by a subconfiguration if work is done at either end of a

path going through the subconfiguration. In other words, a S subcon-

figuration, for example, performs work when there is a write to one of

its drives or when there is a read from one or its drives (which

changes main storage, which is outside of the a subconfiguration). At

one blow, this definition does three things: 1) it defines the work

of a subconfiguration as all of the work that "emanates" from it, in

either direction, 2) it preserves the containment property for work

and 3) it partitions subconfigurations. A partition of a logical

subconfiguration is a set of subconfigurations such that their graft

is the subconfiguration and such that each "leaf" of the subcon-

figuration appears in just one member of the set. (A physical leaf

having two designations may appear in two members, once under each

designation, because the actions of the two logical units are mutually

exclusive over time.)

We write the work done by software unit S on subconfiguration X as

W(S;X). A unit of work, called simply enough, a work is indicated by

W. Metric prefixes are normally used to indicate larger quantities of

work, e.g.:

1000O; f 1 Kilowork - 1 1KO; 1000 IQ = 1 Megawork f 1 HV;

and 1000 M = 1 Gigawork 1 GJ.

It follows directly from the definitions given above that

W(S;X) = (Si;X),
i

k -37-
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where the S. are a partition, and

w(S;X) =, (S;X.),
*

where the X, are a partition of X. In particular,

W(S;M) = W(S;y) + W(S;0)

W(S;XO) = W(S; ) and

W(S;X. = iJ

W(S;a ) k W(S 6 ik), and substituting back

W(S;) = W(S;y) + i W(S yk).
i,j,k

In other words, the total work by S is the simple sum of the CPU work

and all the drive work. Another such relationship based on a partition into

equipment class subconfigurations often turns out to be very useful:

W(S;,p) - W(S;CPU) + W(S;disk) + W(S;tape) + W(S;ptr) + . .

This property of software work, the whole is equal to the sum of its

parts no matter how the whole is partitioned, is called the extensive

property. For the purposes of theory construction it is a very valuable

property simply because it permits us to do ordinary arithmetic when dealing

with the variable work or functions of it.
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WORK AND TIME RELATIONSHIPS: POWER

In every branch of physics there arises naturally a variable which

is the rate at which work is done over time. It is called power and

is defined

dWP =dT'

or more simply,

WP = ,
=T'

which is the average power over the interval T. Since work an time

are now defined in software physics, the concept of software power

also arises naturally.

Stated in its most general terms, software power is defined by the

relationship:

TX S ;4X)
P(SiS;x,, x ) = ~i~x

Tx (s;)

In the case where S. = S then we have the subconfiguration powerI

relationship:

(S;X.,X)= W (S; X')
Tx(S; X)

In the case where X. = X we have the software unit power relationship

P(Si,S;X) = w(siX)
Tx(S;X)

All of these cases show the work done for some software unit by some

subconfiguration relative to some higher clock. They are, therefore,

relative powers.

In the case where both the software units and the subconfigura-

tions are equal we have

P(S;X) =W(S;X)
Tx (S; X) '
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the work of (S;X) with respect to its own clock. This is called

absolute power. It is absolute only in the sense that it is not

relative. No implication of "ultimate" is intended, for absolute

power may be varied, especially in the case of I/O.

A relationship of fundamental importance is revealed by the

following sequence of rewritings:

P(S; ,,X) W(S; X) Tx (S;X)

Tx(S;X) Tx (S, X,)

- W(S;X.) Tx(S;X.)

Tx (S; X,) Tx(S;X)

- P(S;X.) .U(S;X.X)

i.e., the relative power equals the absolute power of the lower

subconfiguration times the utilization. Dually, for software units,

we have

P(S iS; x) = P(S i;x ) -U (S i S ;x ) .

When required, the chain rule for utilizations may be employed, such

as: P(S;X**,X) = P(S;X**)oU(S;X**,X.).U(S;X., X) and so on.

Now, observe

P(;X =W(S;Y) = W(S.;X) = P(S.,S;x)Tx(S;X) i Tx(S;X) i

where the S, are a partition of S. Dually we obtain

P(SX) = [ P(S;X.,X)
*

where X.'s are a subconfiguration partition of X. In other words,

the absolute power is the sum of the relative powers of any partition.

The above manipulations suggest that the same sort of thing might

be done using ratios of work rather than ratios of time. The ratio

W(S. x)

W(SX)
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will be written D(Si,S;X) because it is a distribution number, as

will become apparent presently. Now, P(SiS;X) - D(Si,S;X).P(SX)

and dually, P(S;X.,X) = D(S;X.,X)'P(S;X). In other words, the

relative power equals the absolute power of the higher subconfigura-

tion times the distribution. we call these distribution numbers

because

D(S;X.,X) ' (S; X.) . 1,
* * W(S;X)

that is the D's are such that 0 < D. < 1 and
i - 1 -

Di 1

which are the properties of a frequency distribution.

[ P(S;X*,X) = [ D(S;X4,X)'P(S;X) = P(S;X)
* *

which brings us full circle. Of course, there is also a chain rule

for distribution numbers, e.g.,

D(S;X**,X) = D(S X**,X) .D(S;X*,X).

One final set of observations should be made, relating the

absolute powers, relative powers, utilizations and distributions:

P(SiPS;x X ) ffi D(SiS;x.).U (S;x*,x).P(S;x.)

or =D(S i;x.,x).U(SiS;x).P(Si ;x)-

The earlier observations, where either Si = S or X. = X, can be

derived from these last two by simply substituting unity for the
appropriate D's and U's. The reader can discover for himself what

summing the first equation over i and summing the second over .

produce.

It may be helpful at this point to discuss the significance of

these results, in the sense of understanding their impact, relating

them to other approaches or intepretations. We have already remarked

that utilization in software physics corresponds to utilization in

queueing theory. Now let us consider absolute power. P(S;X) is the
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rate at which X produces work when it is executing. It is a service

rate. Put another way,

1 = Tx(S;y)

P(S X) W(S;X)

is the time for X to complete a unit of work when X is working. It is

the service time of X. Relative power, P(S;X,,X), on the other

hand, is the rate at which X, produces work over a larger time, an

observation time, Tx(S;X). It is, therefore, the throughput rate

(over the time Tx(S;X)). Recalling and rewriting one of the first

results in this section:

1
U(S;X*'x) = P(S;X'X)"

or in the Buzen-Denning notation U = Xx *Sx, which is the

utilization law of operational analysis.

Distribution numbers do not have a simple corresponding

operational analysis. They resemble in some ways visit ratios and in

other ways routing frequencies. Distribution relative to the work of

the full configuration, W(S;) are visit ratios. Distributions with

respect to the work of a continuing node, e.g.,

w (S ; X,)

W(S;X)

are routing frequencies. Our interest in them will be that they

characterize the way the work burden is distributed over subcon-

figurations. That is, they are a basic device for characterizing

workloads, taken separately. Contrariwise, relative powers are a

characterization of the way work flow distributes over subconfigura-

tions, taken separately. These observations are the basis for

relating the propriety of a configuration for a given workload and

vice-versa.
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FUNDAMENTAL VARIABLES: STORAGE OCCUPANCY

Storage occupancy is a spatial concept, a measure of the extent of

storage associated with a software unit. The unit of measure is a

container, in our case, typically, an 8-bit byte. This is both

conventional and convenient for our purposes. To establish the

association between software units and storage we again appeal to the

complete instruction "trace." Associated with each instruction of a

software unit is a set of containers and their addresses, typically

derived from an initial address for the instruction and a known length

in containers for the instruction. Likewise, associated with the

operands are sets of containers and their addresses. The amount of

storage occupancy is the count of the containers in the set which is

the union of the sets of instruction and operands containers. This is

the instruction or instantaneous storage occupancy. The storage

occupancy of a software unit is the count of containers in the set

formed by the union of the sets making up the instruction occupan-

cies. Because the existence of the instructions and operands in the

storages constitutes a realization of them, the notation for storage

occupancy is R(S;O), where G is the collection of storages.

Several observations should be made regarding this definition.

First, because a software unit consists of instruction executions over

some time interval, there is an implicit time interval associated with

storage occupancy. The most natural one is from the first instruction

execution to the last with respect to the system clock, i.e.,

Te(SM*). Another, of course, is the execution times of the various

processors manipulating the storages such as Tx(S;P). Now, if the

storages are partitioned it is the case that R(S;O) - JR(S;a,)

where the 0T are a partitioning of a. Typically, in practice, the

partitioning would be into main storages and the storage associated

with various drives. Then the total storage occupied by S is the sum

of the main storage occupancy and that associated with all the

relevant drives.
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If the time interval involved is with respect to some higher

clock, then we can discuss other software units over the same inter-

val. It should be clear from the previous discussion that over a time

two software units may, by turns, occupy some containers, even though

the software units are disjoint. To form the composition of storage

occupancies we must first form the union of the sets of containers and

then take the count. However, this yields the same result as first

taking the union of the software units and then measuring the storage

occupancy, so that we have

U UR(S;a) = [{Sa}] = [{S;}] R(Sa) where S = US
*

which may be a partition or not, and where (1 indicates the measure

function (count) of the set {}.

The above definition differs from some common measures of storage

occupancy. It is usual, thinking in terms of programs instead of

software units, to consider the main storage required to contain the

loaded program as its main storage occupancy even though some of its

instructions are not executed in the consequent run of the program.

In our definition, the unexecuted instructions would not appear in any

software unit and hence would not contribute to the storage occupancy

measure. If one feels compelled to identify the two notions then the

instructions of the load process must be considered part of the soft-

ware unit. Then everything else follows as required. Another common

measure is the storage allotted or allocated to a program run. This

amount of storage is a function of operating system policy and

arbitrary human action. It has no necessary relationship to charac-

teristics arising from the executing system itself and, therefore,

cannot be treated in purely software physical terms.

I

4 ____ -44-



I

CONCLUDING REMARKS

Only the nuclear theory, the fundamental concepts and primary

results, have been presented here. A considerable body of work based

on software physics has been done already, chiefly by the staff and

members of the Institute for Software Engineering, but it has not been

generally published.

In the purely theoretical area, Traister has developed the

relationships to operational analysis and queueing theory which are

merely suggested in this paper. In the area of applied theory much

work has been done on workload forecasting, accounting and related

financial issues and capacity analysis and planning, especially of I/O

subconfigurations.

In the engineering and "laboratory" areas powers of various CPU's

have been measured by both software and hardware monitor techniques,

as have a variety of peripheral devices and subsystems. Software

physics has proved very valuable in software benchmarking, providing

methods of comparing the efficiency of the algorithms themselves,

distinct from the influence of hardware as well as the more conven-

tional performance comparisons.

Much remains to be done in extending the theory, in increasing the

scope of applications of the theory and in measurement and engineer-

ing. There are some very difficult problems in all three areas that

have not yet even been approached. It is hoped that this paper will

stimulate interest and encourage participation -- for the more hands

turned to the tasks, the more likely the successes.
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